Publicado:

2023-11-29

Número:

Vol. 17 Núm. 2 (2023)

Sección:

Visión Investigadora

A differential drive mobile robot controlled by using the robotics operational system (ROS)

Un robot móvil de accionamiento diferencial controlado mediante el sistema operativo robótico (ROS)

Autores/as

  • Henry Borrero-Guerrero Universidad Distrital Francisco José de Caldas https://orcid.org/0000-0003-4243-4205
  • Juan José López-Aguilar Universidad Distrital Francisco José de Caldas
  • Alejandra Orduz-García Universidad Distrital Francisco José de Caldas
  • Sara Valentina Barrero Universidad Distrital Francisco José de Caldas
  • Andrés Leonardo Jutinico-Alarcón Universidad Distrital Francisco José de Caldas https://orcid.org/0000-0001-9146-9637

Palabras clave:

Crop rows following, Differential drive mobile robot prototype, Fuzzy control, IMU, LIDAR, ROS (en).

Palabras clave:

Seguimiento de hileras de cultivos, Prototipo de robot móvil de accionamiento diferencial, Control difuso, IMU, LIDAR, ROS (es).

Resumen (en)

Considering that the working of mobile robots is facilitated by using distributed embedded systems capable of working cooperatively and that managing these systems requires distributed software applications generally written in C++ or Python, it can be argued that ROS (Robotics Operational Systems) can be considered as a useful tool in undertaking robotic projects as it facilitates the integration of software drivers for installed devices. With ROS, software devices can be kept separate but communicate data to achieve distributed control. This paper describes partial results of a currently ongoing research project, which employs a fuzzy controller to maintain a differential drive mobile robot in a path between crops rows, which are detected using LiDAR (Light Detection and Ranging) and IMU (Inertial Measurement Unit) sensors. Python programs are used to read sensors and control robot DC motors using a fuzzy controller working in a team on the ROS platform. This paper provides a general overview of our robot, including its structure, hardware, software, reached results and future works.

Resumen (es)

Teniendo en cuenta que el funcionamiento de los robots móviles se ve facilitado por el uso de sistemas embebidos distribuidos capaces de trabajar de forma cooperativa y que la gestión de estos sistemas requiere aplicaciones de software distribuidas escritas generalmente en C++ o Python, se puede argumentar que ROS (Robotics Operational Systems) puede considerarse una herramienta útil a la hora de emprender proyectos robóticos, ya que facilita la integración de controladores de software para los dispositivos instalados. Con ROS, los dispositivos de software pueden mantenerse separados pero comunicar datos para lograr un control distribuido. Este artículo describe resultados parciales de un proyecto de investigación actualmente en curso, que emplea un controlador difuso para mantener un robot móvil de accionamiento diferencial en una trayectoria entre hileras de cultivos, que se detectan mediante sensores LiDAR (Light Detection and Ranging) e IMU (Inertial Measurement Unit). Se utilizan programas Python para leer los sensores y controlar los motores DC del robot utilizando un controlador difuso trabajando en equipo en la plataforma ROS. Este artículo proporciona una visión general de nuestro robot, incluyendo su estructura, hardware, software, resultados alcanzados y trabajos futuros.

Referencias

H. Borrero Guerrero, A.E. Baquero Velasquez, J.F. Barrero, D.Z. Côco, J.C. Risardi, D.V. Magalhães, y M. Becker, "Orientation (yaw) fuzzy controller applied to a car-like mobile robot prototype," in 2014 IEEE 5th Colombian Workshop on Circuits and Systems (CWCAS), 2014, pp. 1-6. https://doi.org/10.1109/CWCAS.2014.6994603

V.A.H. Higuti, H.B. Guerrero, A.E.B. Velasquez, R. Pinto, L.M. Tinelli, D.V. Magalhães, y D. Milori, "Low-cost embedded computer for mobile robot platform based on raspberry board," in ABCM International Congress of Mechanical Engineering (Cobem2015), Rio de Janeiro, Brazil, 2015.

H.B. Guerrero, "Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio," Ph.D. thesis, Escola de Engenharia de São Carlos, Universidade de Sao Paulo, 2016.

H.B. Guerrero, "Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio," Ph.D. thesis, Escola de Engenharia de São Carlos, Universidade de Sao Paulo, 2016.

J. Ni, Y. Wang, H. Li, y H. Du, "Path tracking motion control method of tracked robot based on improved LQR control," in 2022 41st Chinese Control Conference (CCC), 2022. https://doi.org/10.23919/CCC55666.2022.9902113

D. Ben Halima Abid, N.Y. Allagui, y N. Derbel, "Navigation and trajectory tracking of mobile robot based on kinematic PI controller," in 2017 18th International Conference on Sciences, 2017. https://doi.org/10.1109/STA.2017.8314966

N.Y. Allagui, D.B. Abid, y N. Derbel, "Autonomous navigation of mobile robot with combined fractional order PI and fuzzy logic controllers," in 2019 16th International Multi-Conference on Systems, Signals Devices (SSD), 2019, pp. 78-83. https://doi.org/10.1109/SSD.2019.8893176

J. Lentin, "Robot operating system for absolute beginners," Apress, Berkeley, CA, 2018.

I. Nevludov, O. Sychova, O. Reznichenko, S. Novoselov, D. Mospan, y V. Mospan, "Control system for agricultural robot based on ROS," in 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES), 2021, pp. 1-6. https://doi.org/10.1109/MEES52427.2021.9598560

R.K. Megalingam, D. Nagalla, K. Nigam, V. Gontu, y P.K. Allada, "PID-based locomotion of multi-terrain robot using ROS platform," in 2020 Fourth International Conference on Inventive Systems and Control (ICISC), 2020, pp. 751-755. https://doi.org/10.1109/ICISC47916.2020.9171152

I. Alam Bhuiyan, "LiDAR Sensor for Autonomous Vehicle," 2017. https://doi.org/10.13140/RG.2.2.16982.34887/1

Z. Lin, Y. Xiong, H. Dai, y X. Xia, "An experimental performance evaluation of the orientation accuracy of four nine-axis MEMS motion sensors," in 2017 5th International Conference on Enterprise Systems (ES), 2017, pp. 185-189. https://doi.org/10.1109/ES.2017.37

B.G. Henry, Q.Y. David, C.M.J. Estivent, C.C.L. Arbey, C.R.Y. Alexis, y S.R. Andrés, "Lidar readings based mobile robot wall-following task using a reactive fuzzy control system - a low-cost experimental approach", 2020. https://hemeroteca.unad.edu.co/index.php/memorias/article/view/4201

H.B. Guerrero, "Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio," Ph.D. thesis, Escola de Engenharia de São Carlos, Universidade de Sao Paulo, 2016.

S.N. Sivanandam, S. Sumathi, y S.N. Deepa, "Introduction to Fuzzy Logic using MATLAB," Springer-Verlag, Berlin, Germany, 2007. https://doi.org/10.1007/978-3-540-35781-0

Cómo citar

APA

Borrero-Guerrero, H., López-Aguilar, J. J., Orduz-García, A., Barrero, S. V., y Jutinico-Alarcón, A. L. (2023). A differential drive mobile robot controlled by using the robotics operational system (ROS). Visión electrónica, 17(2). https://geox.udistrital.edu.co/index.php/visele/article/view/21881

ACM

[1]
Borrero-Guerrero, H. et al. 2023. A differential drive mobile robot controlled by using the robotics operational system (ROS). Visión electrónica. 17, 2 (nov. 2023).

ACS

(1)
Borrero-Guerrero, H.; López-Aguilar, J. J.; Orduz-García, A.; Barrero, S. V.; Jutinico-Alarcón, A. L. A differential drive mobile robot controlled by using the robotics operational system (ROS). Vis. Electron. 2023, 17.

ABNT

BORRERO-GUERRERO, Henry; LÓPEZ-AGUILAR, Juan José; ORDUZ-GARCÍA, Alejandra; BARRERO, Sara Valentina; JUTINICO-ALARCÓN, Andrés Leonardo. A differential drive mobile robot controlled by using the robotics operational system (ROS). Visión electrónica, [S. l.], v. 17, n. 2, 2023. Disponível em: https://geox.udistrital.edu.co/index.php/visele/article/view/21881. Acesso em: 21 jun. 2024.

Chicago

Borrero-Guerrero, Henry, Juan José López-Aguilar, Alejandra Orduz-García, Sara Valentina Barrero, y Andrés Leonardo Jutinico-Alarcón. 2023. «A differential drive mobile robot controlled by using the robotics operational system (ROS)». Visión electrónica 17 (2). https://geox.udistrital.edu.co/index.php/visele/article/view/21881.

Harvard

Borrero-Guerrero, H. (2023) «A differential drive mobile robot controlled by using the robotics operational system (ROS)», Visión electrónica, 17(2). Disponible en: https://geox.udistrital.edu.co/index.php/visele/article/view/21881 (Accedido: 21 junio 2024).

IEEE

[1]
H. Borrero-Guerrero, J. J. López-Aguilar, A. Orduz-García, S. V. Barrero, y A. L. Jutinico-Alarcón, «A differential drive mobile robot controlled by using the robotics operational system (ROS)», Vis. Electron., vol. 17, n.º 2, nov. 2023.

MLA

Borrero-Guerrero, Henry, et al. «A differential drive mobile robot controlled by using the robotics operational system (ROS)». Visión electrónica, vol. 17, n.º 2, noviembre de 2023, https://geox.udistrital.edu.co/index.php/visele/article/view/21881.

Turabian

Borrero-Guerrero, Henry, Juan José López-Aguilar, Alejandra Orduz-García, Sara Valentina Barrero, y Andrés Leonardo Jutinico-Alarcón. «A differential drive mobile robot controlled by using the robotics operational system (ROS)». Visión electrónica 17, no. 2 (noviembre 29, 2023). Accedido junio 21, 2024. https://geox.udistrital.edu.co/index.php/visele/article/view/21881.

Vancouver

1.
Borrero-Guerrero H, López-Aguilar JJ, Orduz-García A, Barrero SV, Jutinico-Alarcón AL. A differential drive mobile robot controlled by using the robotics operational system (ROS). Vis. Electron. [Internet]. 29 de noviembre de 2023 [citado 21 de junio de 2024];17(2). Disponible en: https://geox.udistrital.edu.co/index.php/visele/article/view/21881

Descargar cita

Visitas

49

Descargas

Los datos de descargas todavía no están disponibles.
Loading...