DOI:

https://doi.org/10.14483/22484728.18431

Publicado:

2019-12-06

Número:

Vol. 2 Núm. 2 (2019): Edición especial

Sección:

Visión Investigadora

Kinetic model of the dispersive interaction between a particle with an erythrocyte

Modelo cinético de la interacción dispersiva entre una partícula con un eritrocito

Autores/as

Palabras clave:

Nanoparticle delivery, Particle-erythrocyte interaction, Dispersion, Elastic collision (en).

Palabras clave:

Nanoparticle delivery, Interacción partícula-eritrocito, Dispersión, Colisión elástica (es).

Resumen (en)

A kinetic model of interaction between nanomicroparticle (NMP) and an erythrocyte (RC) was developed considering an elastic type collision, taking into account that the main dispersion center in the delivery of drugs through the bloodstream are the RC. For the analysis of the model, three cases were considered where the position and speed of the MPN were varied. In case 1, the initial position of the MPN was varied with respect to the x axis; In case 2, there was a variation of the position with respect to the y axis, and finally, the speed with respect to the x axis was varied. This study allowed calculating the angle of dispersion (α) based on the impact parameter (s) with respect to the axis of symmetry of the RC. It was verified that in frontal collisions with s values close to the center of the axis of symmetry, the NMP presents the same incident trajectory, with a null angle of dispersion. In an oblique collision, the dispersion is greater and dependent on the initial position and the speed in its Cartesian components, thus a dependency with respect to the initial position is identified, as well as the direction of movement given by the speed components, which it is reflected in the variation of the angle of dispersion.

Resumen (es)

Se desarrolló un modelo cinético de interacción entre nanomicropartícula (NMP) y un eritrocito (RC) considerando una colisión de tipo elástica, teniendo en cuenta que el principal centro de dispersión en la entrega de medicamentos por el torrente sanguíneo son los RC. Para el análisis del modelo se consideró tres casos donde se varió la posición y velocidad de la NMP. En el caso 1 se varió la posición inicial de la NMP con respecto al eje x; en el caso 2 hubo variación de la posición respecto al eje y, por último, se varió la velocidad con respecto al eje x. Este estudio permitió calcular el ángulo de dispersión (α) en función del parámetro de impacto (s) respecto al eje de simetría del RC. Se verificó que en colisiones frontales con valores de s cercanos al centro del eje de simetría, la NMP presenta la misma trayectoria incidente, con un ángulo de dispersión nulo. En una colisión oblicua la dispersión es mayor y dependiente de la posición inicial y la velocidad en sus componentes cartesianos, de esta forma se identifica una dependencia respecto a la posición inicial, así como el sentido del movimiento dado por las componentes de la velocidad, que se ve reflejado en la variación del ángulo de dispersión.

Referencias

A. S. Lübbe, C. Alexiou, and C. Bergemann, "Clinical Applications of Magnetic Drug Targeting," J. Surg. Res., vol. 95, no. 2, pp. 200-206, Feb. 2001, https://doi.org/10.1006/jsre.2000.6030

K. Mosbach and U. Schröder, "Preparation and application of magnetic polymers for targeting of drugs," FEBS Lett., vol. 102, no. 1, pp. 112-116, Jun. 1979, doi: 10.1016/0014-5793(79)80940-0. https://doi.org/10.1016/0014-5793(79)80940-0

P. A. Voltairas, D. I. Fotiadis, and L. K. Michalis, "Hydrodynamics of magnetic drug targeting," J. Biomech., vol. 35, no. 6, pp. 813-821, Jun. 2002, https://doi.org/10.1016/S0021-9290(02)00034-9

S. Senapati, A. K. Mahanta, S. Kumar, and P. Maiti, "Controlled drug delivery vehicles for cancer treatment and their performance," Signal Transduct. Target. Ther., vol. 3, no. 1, p. 7, Dec. 2018, https://doi.org/10.1038/s41392-017-0004-3

E. Pérez-Herrero and A. Fernández-Medarde, "Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy," Eur. J. Pharm. Biopharm., vol. 93, pp. 52-79, Jun. 2015, https://doi.org/10.1016/j.ejpb.2015.03.018

S. Kayal, D. Bandyopadhyay, T. K. Mandal, and R. V. Ramanujan, "The flow of magnetic nanoparticles in magnetic drug targeting," RSC Adv., vol. 1, no. 2, p. 238, 2011, https://doi.org/10.1039/c1ra00023c

M. Asfer, S. K. Saroj, and P. K. Panigrahi, "Retention of ferrofluid aggregates at the target site during magnetic drug targeting," J. Magn. Magn. Mater., vol. 436, pp. 47-56, Aug. 2017, https://doi.org/10.1016/j.jmmm.2017.04.020

J. Tan, A. Thomas, and Y. Liu, "Influence of red blood cells on nanoparticle targeted delivery in microcirculation," Soft Matter, vol. 75, no. 2, pp. 187-206, 2012, https://doi.org/10.1039/C2SM06391C

P. Decuzzi and M. Ferrari, "The adhesive strength of non-spherical particles mediated by specific interactions," Biomaterials, vol. 27, no. 30, pp. 5307-5314, Oct. 2006, https://doi.org/10.1016/j.biomaterials.2006.05.024

A. Coclite, G. Pascazio, M. D. de Tullio, and P. Decuzzi, "Predicting the vascular adhesion of deformable drug carriers in narrow capillaries traversed by blood cells," J. Fluids Struct., vol. 82, pp. 638-650, Oct. 2018, https://doi.org/10.1016/j.jfluidstructs.2018.08.001

T. AlMomani, H. S. Udaykumar, J. S. Marshall, and K. B. Chandran, "Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow," Ann. Biomed. Eng., vol. 36, no. 6, pp. 905-920, 2008, https://doi.org/10.1007/s10439-008-9478-z

A. Boghi, F. Russo, and F. Gori, "Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk," J. Magn. Magn. Mater., vol. 437, pp. 86-97, 2017, https://doi.org/10.1016/j.jmmm.2017.04.055

C. Alexiou, A. Schmidt, R. Klein, P. Hulin, C. Bergemann, and W. Arnold, "Magnetic drug targeting: Biodistribution and dependency on magnetic field strength," J. Magn. Magn. Mater., vol. 252, no. 1-3 SPEC. ISS., pp. 363-366, Nov. 2002, https://doi.org/10.1016/S0304-8853(02)00605-4

A. K. Gupta and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomaterials, vol. 26, no. 18, pp. 3995-4021, 2005, https://doi.org/10.1016/j.biomaterials.2004.10.012

H. L. Goldsmith and T. Karino, "Microscopic Considerations: the Motions of Individual Particles," Ann. N. Y. Acad. Sci., vol. 283, no. 1, pp. 241-255, 1977, https://doi.org/10.1111/j.1749-6632.1977.tb41770.x

P. Decuzzi, F. Causa, M. Ferrari, and P. A. Netti, "The effective dispersion of nanovectors within the tumor microvasculature," Ann. Biomed. Eng., vol. 34, no. 4, pp. 633-641, 2006, https://doi.org/10.1007/s10439-005-9072-6

J. Tan, W. Keller, S. Sohrabi, J. Yang, and Y. Liu, "Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method," Nanomaterials, vol. 6, no. 2, p. 30, 2016, https://doi.org/10.3390/nano6020030

D. A. Reasor, M. Mehrabadi, D. N. Ku, and C. K. Aidun, "Determination of Critical Parameters in Platelet Margination," Ann. Biomed. Eng., vol. 41, no. 2, pp. 238-249, Feb. 2013, https://doi.org/10.1007/s10439-012-0648-7

T.-R. Lee, M. Choi, A. M. Kopacz, S.-H. Yun, W. K. Liu, and P. Decuzzi, "On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better," Sci. Rep., vol. 3, no. 1, p. 2079, Dec. 2013, https://doi.org/10.1038/srep02079

K. Gitter and S. Odenbach, "Experimental investigations on a branched tube model in magnetic drug targeting," J. Magn. Magn. Mater., vol. 323, no. 10, pp. 1413-1416, 2011, https://doi.org/10.1016/j.jmmm.2010.11.061

A. S. Lãbbe, C. Bergemann, W. Huhnt, T. Fricke, and H. Riess, "Predinical Experiences Drug Targeting : Tolerance and Efficacy," Cancer Res., vol. 56, pp. 4694-4701, 1996.

Z. Xu and C. Kleinstreuer, "Heterogeneous blood flow in microvessels with applications to nanodrug transport and mass transfer into tumor tissue," Biomech. Model. Mechanobiol., vol. 18, no. 1, pp. 99-110, Feb. 2019, https://doi.org/10.1007/s10237-018-1071-2

U. Gülan, B. Lüthi, M. Holzner, A. Liberzon, A. Tsinober, and W. Kinzelbach, "Experimental study of aortic flow in the ascending aorta via Particle Tracking Velocimetry," Exp. Fluids, vol. 53, no. 5, pp. 1469-1485, Nov. 2012, https://doi.org/10.1007/s00348-012-1371-8

E. Carboni, K. Tschudi, J. Nam, X. Lu, and A. W. K. Ma, "Particle Margination and Its Implications on Intravenous Anticancer Drug Delivery," AAPS PharmSciTech, vol. 15, no. 3, pp. 762-771, Jun. 2014, https://doi.org/10.1208/s12249-014-0099-6

A. Dadvand, "Simulation of Flowing Red Blood Cells with and without Nanoparticle Dispersion Using Particle-based Numerical Methods," in Computational Approaches in Biomedical Nano-Engineering, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018, pp. 191-225. https://doi.org/10.1002/9783527344758.ch8

D. A. Fedosov, B. Caswell, and G. E. Karniadakis, "A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics," Biophys. J., vol. 98, no. 10, pp. 2215-2225, May 2010, https://doi.org/10.1016/j.bpj.2010.02.002

R. Toy, P. M. Peiris, K. B. Ghaghada, and E. Karathanasis, "Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles," Nanomedicine, vol. 9, no. 1. Future Medicine Ltd., pp. 121-134, 2014, https://doi.org/10.2217/nnm.13.191

S. Wang, S. Sohrabi, J. Xu, J. Yang, and Y. Liu, "Geometry design of herringbone structures for cancer cell capture in a microfluidic device," Microfluid. Nanofluidics, vol. 20, no. 11, Nov. 2016, https://doi.org/10.1007/s10404-016-1813-3

M. Dao, C. T. Lim, and S. Suresh, "Mechanics of the human red blood cell deformed by optical tweezers," J. Mech. Phys. Solids, vol. 51, no. 11-12, pp. 2259-2280, Nov. 2003, https://doi.org/10.1016/j.jmps.2003.09.019

C. Y. Chee, H. P. Lee, and C. Lu, "Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte," Phys. Lett. A, vol. 372, no. 9, pp. 1357-1362, Feb. 2008. https://doi.org/10.1016/j.physleta.2007.09.067

Cómo citar

APA

Riaño-Rivera, Ángela J., Rodríguez-Patarroyo, D. J., y Pantoja-Benavides, J. F. (2019). Kinetic model of the dispersive interaction between a particle with an erythrocyte. Visión electrónica, 2(2), 297–303. https://doi.org/10.14483/22484728.18431

ACM

[1]
Riaño-Rivera, Ángela J. et al. 2019. Kinetic model of the dispersive interaction between a particle with an erythrocyte. Visión electrónica. 2, 2 (dic. 2019), 297–303. DOI:https://doi.org/10.14483/22484728.18431.

ACS

(1)
Riaño-Rivera, Ángela J.; Rodríguez-Patarroyo, D. J.; Pantoja-Benavides, J. F. Kinetic model of the dispersive interaction between a particle with an erythrocyte. Vis. Electron. 2019, 2, 297-303.

ABNT

RIAÑO-RIVERA, Ángela Johana; RODRÍGUEZ-PATARROYO, Diego Julián; PANTOJA-BENAVIDES, Jaime Francisco. Kinetic model of the dispersive interaction between a particle with an erythrocyte. Visión electrónica, [S. l.], v. 2, n. 2, p. 297–303, 2019. DOI: 10.14483/22484728.18431. Disponível em: https://geox.udistrital.edu.co/index.php/visele/article/view/18431. Acesso em: 30 abr. 2024.

Chicago

Riaño-Rivera, Ángela Johana, Diego Julián Rodríguez-Patarroyo, y Jaime Francisco Pantoja-Benavides. 2019. «Kinetic model of the dispersive interaction between a particle with an erythrocyte». Visión electrónica 2 (2):297-303. https://doi.org/10.14483/22484728.18431.

Harvard

Riaño-Rivera, Ángela J., Rodríguez-Patarroyo, D. J. y Pantoja-Benavides, J. F. (2019) «Kinetic model of the dispersive interaction between a particle with an erythrocyte», Visión electrónica, 2(2), pp. 297–303. doi: 10.14483/22484728.18431.

IEEE

[1]
Ángela J. Riaño-Rivera, D. J. Rodríguez-Patarroyo, y J. F. Pantoja-Benavides, «Kinetic model of the dispersive interaction between a particle with an erythrocyte», Vis. Electron., vol. 2, n.º 2, pp. 297–303, dic. 2019.

MLA

Riaño-Rivera, Ángela Johana, et al. «Kinetic model of the dispersive interaction between a particle with an erythrocyte». Visión electrónica, vol. 2, n.º 2, diciembre de 2019, pp. 297-03, doi:10.14483/22484728.18431.

Turabian

Riaño-Rivera, Ángela Johana, Diego Julián Rodríguez-Patarroyo, y Jaime Francisco Pantoja-Benavides. «Kinetic model of the dispersive interaction between a particle with an erythrocyte». Visión electrónica 2, no. 2 (diciembre 6, 2019): 297–303. Accedido abril 30, 2024. https://geox.udistrital.edu.co/index.php/visele/article/view/18431.

Vancouver

1.
Riaño-Rivera Ángela J, Rodríguez-Patarroyo DJ, Pantoja-Benavides JF. Kinetic model of the dispersive interaction between a particle with an erythrocyte. Vis. Electron. [Internet]. 6 de diciembre de 2019 [citado 30 de abril de 2024];2(2):297-303. Disponible en: https://geox.udistrital.edu.co/index.php/visele/article/view/18431

Descargar cita

Visitas

63

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Loading...