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Abstract 

The expansion and operation of the electrical network plays a significant role in ensuring service 

quality. Keeping the components operational requires an integrated, optimal and sustainable 

system focused on reliability analysis to ensure the efficiency and availability in complex 

systems. This paper explores a methodology to improve reliability analyses on power system 

components, using univariate data analysis and time series regression to develop an updated 

fault rate estimation. An exploratory data analysis is developed to understand the behavior and 

uncertain nature of the variables under study. The Simple Exponential Smoothing (SES) model 

and the Autoregressive Integrated Moving Average (ARIMA) are implemented to analyze and 

estimate the behavior of the failure rate of some electrical distribution transformers over time, 

where the variability of reliability is observed as the failure rate varies over time, due to external 

factors. 
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Resumen 

La expansión y operación de la red eléctrica trae consigo grandes retos para garantizar la 

calidad del servicio. Mantener operativos los activos requiere de un sistema integrado, óptimo 

y sostenible enfocado en los análisis de confiabilidad para asegurar la eficiencia y 

disponibilidad de los sistemas complejos. Este documento, basado en un enfoque analítico, 

explora cómo mejorar los análisis de confiabilidad en los componentes de los sistemas 

eléctricos de potencia, mediante el análisis de datos univariante, así como metodologías de 

regresión de series temporales para desarrollar una estimación actualizada de la tasa de 

fallas. Inicialmente, se desarrolla un análisis exploratorio de datos para comprender el 

Autoregressive Integrated Moving Average (ARIMA), suavizado exponencial simple (SES) se 

implementan para analizar y estimar el comportamiento de la tasa de fallas de algunos 

transformadores de distribución a lo largo del tiempo, donde se observa la variabilidad de la 

confiabilidad a medida que la tasa de fallas presenta variaciones en el tiempo, debido a 

factores externos. 

Palabras clave: Confiabilidad, estimación, series de tiempo, sistemas eléctricos, tasa de 

fallas. 

1. Introduction 

Electricity plays a very important role in the development of a country’s economy due to the 

impact of electricity in most modern activities. It is of great interest to implement reliability 

analysis strategies in the planning, design, operation and maintenance of the electricity 

network infrastructure, for an adequate electricity supply [1]. Understanding the state of 

complex systems through reliability indicators can be decisive in the decision making for 

proactive actions that mitigate failures or interruptions, decrease the high electrical load levels 



 

and improve network voltage levels, through high-impact projects and preventive maintenance 

scheduling [2]. 

The implementation of this type of management is challenging because it requires the study 

of complex systems, which consist of many elements that interact with each other. The 

implementation of efficient asset management in power electrical systems is important due to 

the dynamic network configuration, quality of service, operating environment, and operating 

costs, among others [3] [4]. Factors such as projected demand, due to the expansion of the 

industrial and residential sectors, and the progress in the energy transition through Non-

conventional Renewable Energy Sources (NCRES) makes it essential to plan investment 

projects for replenishment and expansion of assets, acquisition of new technologies and 

continuous improvement of electricity networks [5]. However, budgetary limitations in 

investment, operating and maintenance costs of the countries have led to an increasing rate 

of failures in power electrical systems, significantly affecting the productivity of assets and the 

quality of energy service [6]. 

The failure rate is one of the most important parameters in the statistical reliability models. In 

consequence, it is necessary a correct estimation. The use of prediction in time series as in the 

failure rate, has had great impact in the financial sector. Thus, in [7] it is presented a 

methodology to predict short-term stock prices through historical data with Recurrent Neural 

Networks (RNNs). In the home services sector, the Long Short-Term Memory (LSTM) model is 

implemented with the Monte Carlo method to predict the failure rate of water distribution 

networks [8]. In the electrical sector, the failure rate of electric meters is calculated using a 

Bayesian hierarchical approach to establish certain reliability requirements [9]. This paper 

proposes a methodology for the up-to-date estimation of the distribution transformer failure rate, 

using time series modelling methods [10] [11] [12] [13] [14] [15] [16]. 



 
 

2. Methodology 

In this paper, a failure rate prediction model is presented to evaluate the variation of reliability 

of complex equipment or systems over time. An exploratory analysis of the database is 

proposed based on descriptive statistics and methods of verifying stationarity, such as the 

Augmented Dickey-Fuller (ADF) test or the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. In 

the study case, due to the nature of the data, the failure rate prediction model is implemented 

using an Autoregressive Integrated Moving Average (ARIMA) model and exponential 

smoothing methods, to finish with their respective evaluation using MAPE, SMAPE and RMSE 

metrics. Figure 1 shows he general framework of the proposed analysis, which can be divided 

in several steps. 

Figure 1. General framework of analysis  

 

Source: own. 

 

• Descriptive statistics. It is essential in data analysis, as they facilitate the analysis 

and description of the behavior of a random variable. Among the most important 

are: 



 

o Mean: Geometric center of the data.  
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1

𝑛
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Where n represents the number of samples. 

o Standard deviation: Measure the variability of the data with respect to the 

mean.  

𝜎2 =
∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

𝑛
 

o Asymmetry coefficient: Measure of symmetry of the data with respect to its 

center. It is also generally called the coefficient of skewness. 

𝐴𝐶 =
∑ (𝑥𝑖 − 𝑥̅)3𝑛
𝑖=1

𝑛 ∗ 𝜎3
 

• The Augmented Dickey-Fuller (ADF) test and the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test are used to define the stationarity of a time series. Augmented 

Dickey Fuller’s test model is: 

∆𝑦𝑡 = 𝛼 + 𝑝 ∗ 𝑦𝑡−1 + 𝛿1∆𝑦𝑡−1 +⋯+ 𝛿𝑝∆𝑦𝑡−𝑝 + 𝜖𝑡 

• Exponential smoothing methods are used to model non-stationary time series. The 

simple exponential smoothing method is defined by: 

𝑦𝑇+1|𝑇̂ = 𝛼𝑦𝑇 + 𝛼(1 − 𝛼)𝑦𝑇−1 + 𝛼(1 − 𝛼)2𝑦𝑇−2 +⋯ 

Where 𝛼 represents the smoothing parameter.  

• The evaluation of the prediction of the model is presented by metrics of the 

symmetric mean absolute error (SMAPE), the mean absolute error (MAPE) and the 

mean squared error (MSE). 

 

 



 
 

3. Experimental Verification and Results 

3.1. Description of data and descriptive statistics 

By preprocessing and transforming the historical fault data of an electrical distribution 

transformer, of a network operator, connected to the Local Distribution System, the database 

implemented in the analysis and modeling of this study is obtained. It consists of the mobile 

failure rate, that is, the value of the failure rate updated periodically. Each time period in this 

database is a mobile quarter, where its value is adjusted according to changes over time. By 

performing the daily calculation, removing the oldest value from the dataset and selecting the 

most recent date, we obtain 1593 estimates from April 1, 2019 to August 21, 2023, as shown 

in Figure 2. 

Figure 2. Daily Failure Rate  

 

Source: own. 

The failure rates are obtained considering the different incidences that are observed in the 

transformer, and that are considered in circular CREG 063 of 2019 as causes of planned and 

unplanned events, that is, the causes of unavailability that have their origin by atmospheric 

conditions, preventive maintenance, affected by failures, animals or branches on networks, 

network extensions, vandalism, among others. The above, to perform a reliability analysis of 

the equipment, taking into account the requirements and guidelines that network operators in 

Colombia must meet. 



 

Table 1. Descriptive statistics  

Mean Max Min Standard deviation Kurtosis Asymmetry 

0.007949 0.016667 0.001389 0.002956 0.1168 0.585 

Source: own. 

The results of the descriptive statistics are shown in Table 1, where the failure rates range from 

0.001389 to 0.0166, the overall mean of the data is 0.007949 and the standard deviation is 0.2956%. 

The asymmetry coefficient indicates a slight positive asymmetry, which is reflected in the histogram in 

Figure 3, while the kurtosis indicates, due to its near-zero value, a mesocurtic distribution. In 

addition, the mean is close to the median, suggesting that the mean is a good indicator of the 

data center. These statistics reflect the homogeneity of the data. 

Figure 3. Failure Rate Histogram 

 

Source: own. 

When analyzing the annual failure rates, their statistical properties present variations in time, 

whose causality is inferred due to the operating conditions of the network, climate and other 

external and internal factors that greatly influence the failure of an equipment or system.  

Figure 4 shows the failure rates by year.  

 



 
 

Figure 4. Failure rate per year and BoxPlot  

 

Source: own. 

In the first semester of 2020, for example, the failure rate tends to decrease gradually, reaching 

a minimum value of 0.0045, from which an upward trend is observed, reaching a maximum 

value of 0.0166 in the second semester, determining the highest failure rate of the year 2020 

and the analysis horizon. In 2021, a large peak of 0.0134 appears in the first half of the year, 

where subsequently a decreasing trend results in the minimum failure rate value in the year of 

0.0041. During the years of analysis, the failure rate has fluctuated over time, where there are 

decreasing trends in the first quarter of the year and increasing trends at the end of the year. 

In the years 2019, 2020 and 2021 there is a greater instability of the quality of the energy 

service compared to the years 2022 and 2023, since the failure rate in the last two years, that 

represent the incidents in the electrical transformer, are with a lower dispersion of the data 

and generally present a lower average of the order of 0.0045 compared to the 0.009 of the 

previous years. 

 



 

3.2. Stationarity 

Evaluating the stationarity of a time series is a necessary analysis, because it is a desired 

characteristic for this type of data, since the modeling result presents in general a better 

adjustment and feasibility of the prognosis. The mean and moving standard deviation are 

shown in Figure 5. 

Figure 5. Mean and Moving Standard Deviation 

 

Source: own. 

The graph above shows a growing and decreasing nonlinear pattern in the moving average 

and a standard deviation with variabilities that increase and decrease over time. The 

Augmented Dickey-Fuller (ADF) test is used to check the stationarity of the time series; for 

which, if the p-value is less than 0.05, the series is stationary. The test results for the failure 

rate series are presented in Table 2.  

 

 

 

 



 
 

Table 2. Dickey-Fuller test  

T statistic -2.684042 

p-value 0.076841 

N° of Lags Used 8 

N° of Observations Used 1584 

Critical value (1%) -3.434485 

Critical value (5%) -2.863366 

Critical value (10%) -2.567742 

Source: own. 

The null hypothesis, H0, of this test shows that the time series is not stationary. In Table 2, the 

T statistic is greater than 5% of the significance level and the p-value of 0.076841 is greater 

than 5% of the standard confidence level. There is no reason to reject the null hypothesis and 

it is concluded that the series is non-stationary. 

Table 3. Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test 

Test statistic 1.825593 

p-value 0.01 

# of Lags Used 26 

Critical value (1%) 0.739 

Critical value (5%) 0.463 

Critical value (10%) 0.347 

Source: own. 

To confirm the non-standard nature of the time series, the Kwiatkowski-Phillips-Schmidt-Shin 

test is implemented. The null hypothesis, H0, of this test shows that the time series is stationary. 

In Table 3, the T statistic of 1.825593 is less than 5% of the standard confidence level. The 

hypothesis is rejected, and it is concluded that the series is non-stationary. 

3.3. Modeling 

To compare model predictions with actual failure rate values, the division of data into training 

and test sets is initially implemented, as presented in Figure 6.  

 

 



 

Figure 6. Training and test data 

 

Source: own. 

3.3.1. ARIMA model 

To determine the order of the ARIMA model, the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) are used to determine p and q. The autocorrelation and partial 

autocorrelation diagrams of the failure rates are presented in Figure 7. In this, 2 

autocorrelations are observed with an important significance level, so it is defined initially 

(2,1,1) as order of the ARIMA model.  

Figure 7. Autocorrelation function and Partial autocorrelation function  

 

Source: own. 



 
 

When optimizing the model with respect to the Akaike Information Criterion (AIC) metric, the 

ARIMA model (4,1,0) is suggested with the lowest AIC. The prediction in the test data set is 

presented in Figure 8, with its respective confidence interval. The value of the resulting flat line 

is 0.006.  

Figure 8. ARIMA model prediction  

 

Source: own. 

3.3.2. Exponential Smoothing Methods - Exponential Simple Smoothing (SES) 

This model is the simplest of its kind, its forecast function is flat and has the same prediction 

value during its analysis horizon. When performing the simulation, the optimal resulting model 

is obtained with an alpha equal to 0.995. This allows the prediction corresponding to Figure 9. 

The forecast is a flat line with a value equal to 0.009259 which remains constant during the 

analysis interval of the test set. 

 

 

 

 

 



 

Figure 9. Simple Exponential Smoothing Model Prediction  

 

Source: own. 

3.3.3. Exponential Smoothing Methods - Holt Smoothing 

Other methods of exponential smoothing are the Holt method and the Exponential Holt method. 

For our study case, the simulation of the Holt method is initially performed and adjusted with a 

linear trend, resulting in the linear prediction function presented in figure 10 in red. The 

Exponential Holt method implemented is presented in Figure 10 in blue, which shows a 

decreasing behavior, that is, an improvement of these models compared to the ARIMA and 

SES models, because the lines are not flat and have a behavior similar to the time series.  

Figure 10. Prediction models Holt  

 

Source: own. 



 
 

3.3.4. Evaluation 

To evaluate the results of the failure rate modeling, we used the symmetric mean absolute 

percentage error (SMAPE), the mean absolute percentage error (MAPE) and the root mean 

squared error (RMSE). The results are presented in Table 4. 

Table 4. Results prediction errors  

MODEL MAPE SMAPE RSME 

SES 0,6673% 48,1863% 0,3701% 

Holt softening 0,3443% 46,8803% 0,2407% 

ARIMA 0,2680% 23,3021% 0,1561% 

Smoothing of Exponential Holt 0,1879% 17,2608% 0,1323% 

Source: own. 

The Exponential Holt Smoothing model achieves the best prediction with lower error metrics 

than the other models. For example, the SES model proposes as a predictive function a 

constant linear relationship resulting in a SMAPE of 48%. The ARIMA model presents a flat 

linear trend in the prediction function (Figure 8), however, the prediction error values do not 

differ much from the Exponential Holt model, with 23% and 17% respectively.  

3.4. Conclusions 

The exploratory analysis and modeling of the failure rate of a local electrical distribution 

transformer shows a variability in the failure rate values over time. Although the underlying 

causality of the failures must be analyzed, the analyses generate indications of a growing and 

decreasing trend of the data during certain seasons in the analysis horizon. Therefore, 

reliability models will present an important variability by considering the updated failure rate, 

which reflects the current state of the complex system. Regarding the modeling performance, 

it is observed that the models Exponential Holt Smoothing and ARIMA present better 

performance and are viable for the prediction of short-term future values. However, the 

previous study opens the doors to future prediction analysis with more robust models to 



 

analyze the percentage of improvement compared to previous models. 
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